### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### catena-Poly[[[(pyridine- $\kappa N$ )copper(II)]- $\mu$ -3-{1-[(2-aminoethyl)imino]ethyl}-6-methyl-2-oxo-2*H*-pyran-4-olato- $\kappa^4 N, N, O^4: O^2$ ] perchlorate]

# Ali Ourari,<sup>a</sup> Wassila Derafa,<sup>a</sup> Sofiane Bouacida<sup>b</sup>\* and Djouhra Aggoun<sup>a</sup>

<sup>a</sup>Laboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and <sup>b</sup>Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, 25000 Algeria Correspondence e-mail: bouacida\_sofiane@yahoo.fr

Received 18 October 2011; accepted 3 November 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.121; data-to-parameter ratio = 15.2.

In the title compound, { $[Cu(C_{10}H_{13}N_2O_3)(C_5H_5N)]ClO_4\}_n$ , the  $Cu^{II}$  atom has an N<sub>3</sub>O<sub>2</sub> coordination sphere. The complex contains two different ligands, viz. a pyridine molecule and a Schiff base molecule, resulting from the condensation of ethylenodiamine with dehydroacetic acid. The Cu<sup>II</sup> atom exhibits a square-pyramidal geometry: three of the four donors of the pyramid base belong to the Schiff base ligand (an N atom from the amine group, a second N atom from the imine group and the O atom of the pyranone residue) and the fourth donor is the pyridine N atom. The coordination around the metal ion is completed by a longer axial bond to the pyranone O atom of an adjacent Schiff base, so forming a onedimensional polymer. The complex has a +1 charge that is compensated by a perchlorate ion. The crystal packing, which can be described as alternating chains of cations and tetrahedral perchlorate anions along the a axis, is stabilized by intermolecular N-H···O, C-H···O and C-H···N hydrogen-bonding interactions.

#### **Related literature**

For the synthesis of similar compounds: El-Abbassi *et al.* (1987); Fettouhi *et al.* (1996); El-Kihel *et al.* (1999); Tan & Kok-Peng Ang (1988); Djerrari *et al.* (2002); El-Kubaisi & Ismail (1994); Danilova *et al.* (2003); Munde *et al.* (2010). For their applications, see: Maiti *et al.* (1988); Mohan *et al.* (1981); Das & Livingstoone (1976); Moutet & Ali Ourari (1997); Ourari *et al.* (2008).



V = 3664.99 (14) Å<sup>3</sup>

 $0.12 \times 0.11 \times 0.05 \text{ mm}$ 

2619 reflections with  $I > 2\sigma(I)$ 

Mo  $K\alpha$  radiation

 $\mu = 1.38 \text{ mm}^-$ 

T = 295 K

 $R_{\rm int}=0.022$ 

Z = 8

#### **Experimental**

Crystal data  $[Cu(C_{10}H_{13}N_2O_3)(C_5H_5N)]ClO_4$   $M_r = 451.32$ Orthorhombic, *Pcab*  a = 8.8090 (2) Å b = 19.9017 (4) Å

### c = 20.9053 (5) Å Data collection

Nonius KappaCCD diffractometer 7008 measured reflections 3731 independent reflections

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & 246 \text{ parameters} \\ wR(F^2) &= 0.121 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} &= 0.45 \text{ e } \text{\AA}^{-3} \\ 3731 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.49 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Selected bond lengths (Å).

 $\begin{array}{ccccccc} N1-Cu1 & 2.049 \ (2) & O1-Cu1 & 1.914 \ (2) \\ N2-Cu1 & 2.001 \ (3) & O3-Cu1^i & 2.358 \ (2) \\ N3-Cu1 & 1.974 \ (2) & & & & \\ \end{array}$ 

Symmetry code: (i)  $x - \frac{1}{2}, -y + \frac{1}{2}, z$ .

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                       | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|--------------|--------------|--------------------------------------|
| $N2-H2A\cdots O11^{ii}$                | 0.90 | 2.34         | 3.182 (4)    | 156                                  |
| $N2 - H2A \cdots O41^{ii}$             | 0.90 | 2.57         | 3.338 (4)    | 144                                  |
| $N2 - H2B \cdot \cdot \cdot O31^{iii}$ | 0.90 | 2.31         | 3.142 (4)    | 153                                  |
| $C1 - H1 \cdots O1$                    | 0.93 | 2.29         | 2.842 (4)    | 118                                  |
| $C5 - H5 \cdot \cdot \cdot N2$         | 0.93 | 2.59         | 3.121 (4)    | 117                                  |
| $C8 - H8B \cdots O3$                   | 0.96 | 2.39         | 2.809 (4)    | 106                                  |

Symmetry codes: (ii) -x, -y, -z + 1; (iii)  $-x + \frac{1}{2}, y, z + \frac{1}{2}$ .

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2033).

#### References

- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Danilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375–1383.
- Das, M. & Livingstoone, S. E. (1976). Inorg. Chim. Acta, 19, 5-10.
- Djerrari, B., Essassi, E. M. J., Fifani, J. & Carrigues, B. (2002). C. R. Chim. 5, 177-183.

- El-Abbassi, M. E. M., Essassi, E. M. & Fifani, J. (1987). *Tetrahedron Lett.* 28, 1389–1392.
- El-Kihel, A., Benchidmi, M., Essassi, E. M. & Bougout, R. D. (1999). Synth. Commun. 29, 2435–2444.
- El-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785-1788.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). *Acta Cryst.* C52, 1031–1032.
- Maiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57-65.
- Mohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41-54.
- Moutet, J. C. & Ali Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.
- Munde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349–359.
- Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736–1739.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64-68.

Acta Cryst. (2011). E67, m1720-m1721 [doi:10.1107/S1600536811046411]

# *catena*-Poly[[[(pyridine- $\kappa N$ )copper(II)]- $\mu$ -3-{1-[(2-aminoethyl)imino]ethyl}-6-methyl-2-oxo-2*H*-pyran-4-olato- $\kappa^4 N, N, O^4: O^2$ ] perchlorate]

#### A. Ourari, W. Derafa, S. Bouacida and D. Aggoun

#### Comment

The dehydroacetic acid is a row material which is involved in the synthesis of the most heterocyclic compounds (El-Abbassi et al., 1987; Fettouhi et al., 1996; El-Kihel et al., 1999) and the chelating agents such as the Schiff bases. These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Tan et al., 1988; El-Kubaisi et al., 1994; Munde et al., 2010). Additionally, it was often shown that the heterocyclic compounds resulting from this molecule exhibit some therapeutic activities (Das et al., 1976; Mohan et al., 1981; Maiti et al., 1988) useful for the human diseases while the Schiff base complexes obtained from its ligands showed an important catalytic activity particularly in the oxidation reactions as those carried out according the cytochrome P450 model (Moutet et al., 1997; Ourari et al., 2008). Thus, we have attempted to synthesize the Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). So, we describe here the formation of a new copper Schiff base complex from dehydroacetic acid, ethylenediamine, copper perchlorate and pyridine in methanolic solution. This complex was formed in one pot with only one azomethine (-CH=N-) group yielding an unreacted amino group of ethylenediamine leading to an acceptable yield 68%. In this case, it can noted that the ring of the dehydroacetic acid seems to be not open during the reaction as it was reported in the literature (Djerrari et al., 2002) in presence of nucleophile agents such as the pyridinic derivatives. This behavior may be due to an inhibition of the nucleophilic effect of the pyridine since the reaction was conducted in methanolic solution at room temperature and without reflux. Finally, the resulting compound was confirmed by crystallographic studies as further discussed.

The asymetric unit of ionic structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The Cu<sup>II</sup> ion is five coordinated in a square-pyramidal geometry by three N atoms of pyridine, imine and amine group and two O atom of pyranone moiety. The bond lengths for co-ordination Cu<sup>II</sup> sphere is ranging from 1.974 (2) to 2.049 (2) Å for Cu-N distances and Cu-O = 1.914 (2) Å and 1.914 (2) Å (Table 2).

The crystal packing in the title structure can be described by alterning chains of cations and tetrahedral anions of perchlorate along the *c* axis (Fig. 2). It is stabilized by intermolecular N—H···O, C—H···O and C—H···N hydrogen bonding (Table 1). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.

#### **Experimental**

This complex was obtained by mixing stoechiometric quantities of dehydroacetic acid 0.168 g (1 mMol) with copper perchlorate 0.373 g (1 mMol) in methanol. To this mixture was added an excess of pyridine and then 0.060 g (1 mMol) of ethylenediamine dissolved as well in methanol. After two hours of reaction, a mallow precipitate was observed which is immediately recovered by filtration. It was copiously washed with methanol. Its suitable single-crystal was so obtained by slow evaporation from the filtrate.

#### Refinement

The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl), 0.97Å (methylene) or 0.93 Å (aromatic) and N—H = 0.90 Å with  $U_{iso}(H) = 1.2U_{eq}(C \text{ and } N)$  or  $U_{iso}(H) = 1.5U_{eq}(methyl)$ .

#### Figures



Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Connexion between cationic chains in zigzag with anionic tetrahedral *via* N—H···O hydrogen bond showing in dashed line.

# *catena*-Poly[[[(pyridine- $\kappa N$ )copper(II)]-μ- 3-{1-[(2-aminoethyl)imino]ethyl}-6-methyl-2-oxo-2*H*-pyran-4-olato- $\kappa^4 N, N, O^4: O^2$ ] perchlorate]

 $D_{\rm x} = 1.636 {\rm Mg} {\rm m}^{-3}$ 

 $0.12 \times 0.11 \times 0.05 \text{ mm}$ 

 $\theta = 1.0-26.4^{\circ}$   $\mu = 1.38 \text{ mm}^{-1}$  T = 295 KPlate, black

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 4212 reflections

Crystal data

| [Cu(C <sub>10</sub> H <sub>13</sub> N <sub>2</sub> O <sub>3</sub> )(C <sub>5</sub> H <sub>5</sub> N)]ClO <sub>4</sub> |
|-----------------------------------------------------------------------------------------------------------------------|
| $M_r = 451.32$                                                                                                        |
| Orthorhombic, Pcab                                                                                                    |
| a = 8.8090 (2) Å                                                                                                      |
| b = 19.9017 (4)  Å                                                                                                    |
| c = 20.9053 (5) Å                                                                                                     |
| $V = 3664.99 (14) \text{ Å}^3$                                                                                        |
| Z = 8                                                                                                                 |
| F(000) = 1848                                                                                                         |

#### Data collection

| Nonius KappaCCD<br>diffractometer              | 2619 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: Enraf Nonius FR590           | $R_{\rm int} = 0.022$                                                     |
| graphite                                       | $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| Detector resolution: 9 pixels mm <sup>-1</sup> | $h = 0 \rightarrow 10$                                                    |
| CCD rotation images, thick slices scans        | $k = 0 \rightarrow 24$                                                    |

| 7008 measured reflections    | $l = 0 \rightarrow 26$ |
|------------------------------|------------------------|
| 3731 independent reflections |                        |

| Refinement                      |                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------|
| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                     |
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                               |
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | Hydrogen site location: inferred from neighbouring sites                           |
| $wR(F^2) = 0.121$               | H-atom parameters constrained                                                      |
| <i>S</i> = 1.03                 | $w = 1/[\sigma^2(F_0^2) + (0.0723P)^2 + 0.807P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 3731 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                |
| 246 parameters                  | $\Delta \rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$                              |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.49 \ e \ {\rm \AA}^{-3}$                               |
|                                 |                                                                                    |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | У             | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|---------------|--------------|---------------------------|
| C1  | 0.2273 (4)  | 0.02862 (16)  | 0.45790 (16) | 0.0517 (8)                |
| H1  | 0.1798      | 0.0658        | 0.4399       | 0.062*                    |
| C2  | 0.3060 (4)  | -0.01413 (18) | 0.41827 (18) | 0.0600 (9)                |
| H2  | 0.311       | -0.0058       | 0.3746       | 0.072*                    |
| C3  | 0.3770 (4)  | -0.06940 (19) | 0.4441 (2)   | 0.0600 (9)                |
| Н3  | 0.4319      | -0.0988       | 0.4183       | 0.072*                    |
| C4  | 0.3652 (4)  | -0.08009 (18) | 0.5081 (2)   | 0.0630 (10)               |
| H4  | 0.4119      | -0.1171       | 0.5268       | 0.076*                    |
| C5  | 0.2830 (4)  | -0.03545 (16) | 0.54523 (18) | 0.0560 (8)                |
| H5  | 0.2742      | -0.0439       | 0.5888       | 0.067*                    |
| C6  | 0.1257 (4)  | 0.09736 (17)  | 0.71225 (16) | 0.0559 (9)                |
| H6A | 0.1883      | 0.137         | 0.7179       | 0.067*                    |
| H6B | 0.1258      | 0.0722        | 0.752        | 0.067*                    |
| C7  | -0.0333 (4) | 0.11746 (18)  | 0.69521 (16) | 0.0567 (9)                |
| H7A | -0.1003     | 0.0789        | 0.6975       | 0.068*                    |
| H7B | -0.0699     | 0.1514        | 0.7247       | 0.068*                    |

| C8   | -0.2344 (4)   | 0.22163 (17)  | 0.65805 (17)  | 0.0576 (9)   |
|------|---------------|---------------|---------------|--------------|
| H8A  | -0.2762       | 0.1859        | 0.6834        | 0.086*       |
| H8B  | -0.3139       | 0.2426        | 0.6338        | 0.086*       |
| H8C  | -0.1879       | 0.2543        | 0.6856        | 0.086*       |
| C9   | -0.1166 (3)   | 0.19342 (14)  | 0.61287 (14)  | 0.0398 (6)   |
| C10  | -0.1085 (3)   | 0.21966 (14)  | 0.54728 (14)  | 0.0380 (6)   |
| C11  | -0.1603 (3)   | 0.28666 (15)  | 0.53460 (15)  | 0.0430 (7)   |
| C12  | -0.1244 (4)   | 0.26748 (18)  | 0.42205 (14)  | 0.0508 (8)   |
| C13  | -0.1460 (6)   | 0.3012 (2)    | 0.3588 (2)    | 0.0908 (15)  |
| H13A | -0.0797       | 0.3394        | 0.3559        | 0.136*       |
| H13B | -0.2495       | 0.3158        | 0.3549        | 0.136*       |
| H13C | -0.1228       | 0.2702        | 0.3251        | 0.136*       |
| C14  | -0.0700 (4)   | 0.20627 (18)  | 0.43217 (15)  | 0.0562 (9)   |
| H14  | -0.0417       | 0.1798        | 0.3975        | 0.067*       |
| C15  | -0.0541 (3)   | 0.18023 (15)  | 0.49603 (14)  | 0.0423 (7)   |
| N1   | 0.2158 (3)    | 0.01933 (12)  | 0.52137 (12)  | 0.0432 (6)   |
| N2   | 0.1869 (3)    | 0.05540 (13)  | 0.65998 (12)  | 0.0532 (7)   |
| H2A  | 0.1582        | 0.0124        | 0.6655        | 0.064*       |
| H2B  | 0.289         | 0.057         | 0.6602        | 0.064*       |
| N3   | -0.0300 (3)   | 0.14435 (12)  | 0.62977 (12)  | 0.0429 (6)   |
| 01   | 0.0066 (2)    | 0.12212 (10)  | 0.50150 (10)  | 0.0491 (5)   |
| 02   | -0.1684 (3)   | 0.30769 (10)  | 0.47159 (11)  | 0.0541 (6)   |
| O3   | -0.1950 (3)   | 0.33001 (10)  | 0.57362 (11)  | 0.0519 (6)   |
| O11  | -0.1778 (3)   | 0.09728 (16)  | 0.29504 (16)  | 0.0869 (9)   |
| O21  | 0.0241 (4)    | 0.16739 (14)  | 0.26635 (16)  | 0.0868 (9)   |
| O31  | -0.0210 (4)   | 0.06891 (19)  | 0.21098 (16)  | 0.1067 (11)  |
| O41  | 0.0701 (4)    | 0.06507 (16)  | 0.31535 (17)  | 0.0910 (10)  |
| C11  | -0.02517 (10) | 0.09943 (4)   | 0.27165 (4)   | 0.0553 (2)   |
| Cu1  | 0.10791 (4)   | 0.089862 (17) | 0.576431 (17) | 0.03931 (14) |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-----------------|--------------|--------------|--------------|
| C1  | 0.057 (2)   | 0.0475 (18)     | 0.0504 (19)     | 0.0085 (15)  | 0.0026 (16)  | -0.0018 (15) |
| C2  | 0.065 (2)   | 0.062 (2)       | 0.053 (2)       | 0.0106 (18)  | 0.0082 (17)  | -0.0093 (16) |
| C3  | 0.054 (2)   | 0.057 (2)       | 0.069 (2)       | 0.0124 (16)  | 0.0062 (17)  | -0.0149 (19) |
| C4  | 0.063 (2)   | 0.0489 (19)     | 0.078 (3)       | 0.0197 (16)  | -0.0030 (19) | -0.0071 (18) |
| C5  | 0.064 (2)   | 0.0480 (18)     | 0.056 (2)       | 0.0109 (16)  | -0.0041 (17) | -0.0006 (16) |
| C6  | 0.075 (2)   | 0.0528 (19)     | 0.0397 (18)     | 0.0080 (17)  | -0.0046 (16) | 0.0028 (14)  |
| C7  | 0.070 (2)   | 0.062 (2)       | 0.0386 (18)     | 0.0066 (17)  | 0.0109 (16)  | 0.0073 (16)  |
| C8  | 0.065 (2)   | 0.0550 (19)     | 0.053 (2)       | 0.0112 (17)  | 0.0181 (17)  | 0.0024 (16)  |
| C9  | 0.0388 (15) | 0.0399 (15)     | 0.0406 (16)     | -0.0040 (12) | 0.0029 (12)  | -0.0041 (12) |
| C10 | 0.0381 (15) | 0.0365 (14)     | 0.0392 (15)     | 0.0007 (12)  | -0.0003 (12) | 0.0003 (12)  |
| C11 | 0.0422 (16) | 0.0434 (16)     | 0.0434 (17)     | -0.0011 (13) | 0.0003 (13)  | 0.0008 (13)  |
| C12 | 0.062 (2)   | 0.0546 (19)     | 0.0354 (17)     | 0.0125 (15)  | 0.0016 (14)  | 0.0023 (14)  |
| C13 | 0.123 (4)   | 0.094 (3)       | 0.055 (3)       | 0.040 (3)    | 0.002 (2)    | 0.021 (2)    |
| C14 | 0.073 (2)   | 0.061 (2)       | 0.0352 (17)     | 0.0186 (17)  | -0.0016 (15) | -0.0023 (14) |
| C15 | 0.0423 (16) | 0.0458 (16)     | 0.0387 (16)     | 0.0055 (13)  | -0.0009 (12) | -0.0036 (13) |

| N1  | 0.0465 (14) | 0.0377 (12) | 0.0456 (15) | 0.0032 (10)  | -0.0024 (11) | -0.0017 (11) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N2  | 0.0679 (18) | 0.0489 (15) | 0.0428 (15) | 0.0100 (13)  | -0.0001 (13) | 0.0044 (12)  |
| N3  | 0.0466 (15) | 0.0428 (13) | 0.0394 (14) | 0.0003 (11)  | 0.0031 (11)  | 0.0037 (11)  |
| O1  | 0.0591 (13) | 0.0467 (12) | 0.0415 (12) | 0.0163 (10)  | -0.0048 (10) | -0.0058 (9)  |
| O2  | 0.0671 (14) | 0.0458 (12) | 0.0494 (13) | 0.0110 (11)  | 0.0009 (11)  | 0.0060 (10)  |
| O3  | 0.0640 (14) | 0.0388 (11) | 0.0528 (13) | 0.0068 (10)  | 0.0018 (11)  | -0.0062 (10) |
| O11 | 0.0555 (15) | 0.116 (2)   | 0.089 (2)   | -0.0077 (16) | 0.0063 (16)  | 0.0173 (18)  |
| O21 | 0.093 (2)   | 0.0626 (17) | 0.105 (2)   | -0.0126 (16) | -0.0017 (18) | 0.0161 (16)  |
| O31 | 0.109 (3)   | 0.145 (3)   | 0.067 (2)   | -0.022 (2)   | -0.0035 (19) | -0.038 (2)   |
| O41 | 0.088 (2)   | 0.091 (2)   | 0.094 (2)   | 0.0057 (18)  | -0.0299 (18) | 0.0290 (18)  |
| Cl1 | 0.0575 (5)  | 0.0638 (5)  | 0.0447 (5)  | -0.0077 (4)  | -0.0079 (4)  | 0.0055 (4)   |
| Cu1 | 0.0458 (2)  | 0.0370 (2)  | 0.0352 (2)  | 0.00416 (15) | 0.00067 (15) | 0.00081 (14) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—N1    | 1.344 (4) | C10-C11              | 1.434 (4) |
|----------|-----------|----------------------|-----------|
| C1—C2    | 1.375 (4) | C11—O3               | 1.226 (4) |
| С1—Н1    | 0.93      | C11—O2               | 1.384 (4) |
| C2—C3    | 1.376 (5) | C12—C14              | 1.326 (5) |
| С2—Н2    | 0.93      | C12—O2               | 1.365 (4) |
| C3—C4    | 1.358 (6) | C12—C13              | 1.495 (5) |
| С3—Н3    | 0.93      | C13—H13A             | 0.96      |
| C4—C5    | 1.385 (5) | С13—Н13В             | 0.96      |
| C4—H4    | 0.93      | C13—H13C             | 0.96      |
| C5—N1    | 1.337 (4) | C14—C15              | 1.439 (4) |
| С5—Н5    | 0.93      | C14—H14              | 0.93      |
| C6—N2    | 1.477 (4) | C15—O1               | 1.279 (4) |
| C6—C7    | 1.499 (5) | N1—Cu1               | 2.049 (2) |
| С6—Н6А   | 0.97      | N2—Cu1               | 2.001 (3) |
| С6—Н6В   | 0.97      | N2—H2A               | 0.9       |
| C7—N3    | 1.469 (4) | N2—H2B               | 0.9       |
| C7—H7A   | 0.97      | N3—Cu1               | 1.974 (2) |
| С7—Н7В   | 0.97      | O1—Cu1               | 1.914 (2) |
| C8—C9    | 1.512 (4) | O3—Cu1 <sup>i</sup>  | 2.358 (2) |
| C8—H8A   | 0.96      | O11—Cl1              | 1.431 (3) |
| C8—H8B   | 0.96      | O21—Cl1              | 1.425 (3) |
| C8—H8C   | 0.96      | O31—Cl1              | 1.407 (3) |
| C9—N3    | 1.288 (4) | O41—Cl1              | 1.417 (3) |
| C9—C10   | 1.469 (4) | Cu1—O3 <sup>ii</sup> | 2.358 (2) |
| C10—C15  | 1.412 (4) |                      |           |
| N1—C1—C2 | 123.2 (3) | O2—C12—C13           | 111.8 (3) |
| N1—C1—H1 | 118.4     | C12—C13—H13A         | 109.5     |
| C2—C1—H1 | 118.4     | С12—С13—Н13В         | 109.5     |
| C1—C2—C3 | 119.2 (4) | H13A—C13—H13B        | 109.5     |
| C1—C2—H2 | 120.4     | C12—C13—H13C         | 109.5     |
| С3—С2—Н2 | 120.4     | H13A—C13—H13C        | 109.5     |
| C4—C3—C2 | 118.5 (3) | H13B—C13—H13C        | 109.5     |
| С4—С3—Н3 | 120.8     | C12—C14—C15          | 120.9 (3) |

| С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.8      | C12—C14—H14                         | 119.5       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|-------------|
| C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.5 (3)  | C15—C14—H14                         | 119.5       |
| C3—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3      | O1—C15—C10                          | 125.2 (3)   |
| C5—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3      | O1—C15—C14                          | 116.7 (3)   |
| N1—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.1 (3)  | C10-C15-C14                         | 118.1 (3)   |
| N1—C5—H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.5      | C5—N1—C1                            | 116.6 (3)   |
| С4—С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.5      | C5—N1—Cu1                           | 123.7 (2)   |
| N2—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.4 (3)  | C1—N1—Cu1                           | 119.7 (2)   |
| N2—C6—H6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110        | C6—N2—Cu1                           | 108.96 (19) |
| С7—С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110        | C6—N2—H2A                           | 109.9       |
| N2—C6—H6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110        | Cu1—N2—H2A                          | 109.9       |
| С7—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110        | C6—N2—H2B                           | 109.9       |
| Н6А—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.4      | Cu1—N2—H2B                          | 109.9       |
| N3—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.5 (3)  | H2A—N2—H2B                          | 108.3       |
| N3—C7—H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.2      | C9—N3—C7                            | 121.3 (3)   |
| С6—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.2      | C9—N3—Cu1                           | 128.7 (2)   |
| N3—C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.2      | C7 - N3 - Cu1                       | 109.75(19)  |
| С6—С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.2      | C15—O1—Cu1                          | 124.85 (19) |
| H7A—C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.5      | C12 - O2 - C11                      | 122.0 (2)   |
| C9—C8—H8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5      | $C11-O3-Cu1^{i}$                    | 132.6 (2)   |
| C9—C8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5      | 031 - C11 - 041                     | 110.9 (2)   |
| H8A—C8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5      | O31—C11—O21                         | 109.4 (2)   |
| C9—C8—H8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5      | 041 - C11 - 021                     | 109.14(19)  |
| H8A - C8 - H8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5      | 0.1 - 0.1 - 0.11                    | 108.7(2)    |
| H8B-C8-H8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5      | 041—Cl1—Ol1                         | 108.8(2)    |
| N3-C9-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.8 (3)  | 021-Cl1-Ol1                         | 109.94 (19) |
| N3-C9-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.1 (3)  | $\Omega_1$ — $C_{11}$ — $N_3$       | 89 50 (9)   |
| C10-C9-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1190(3)    | 01— $01$ — $N2$                     | 172.52(11)  |
| C15-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.0 (3)  | $N_3$ —Cu1—N2                       | 84 80 (10)  |
| C15-C10-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.8 (3)  | 01—Cu1—N1                           | 89.20 (9)   |
| C11-C10-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.2 (3)  | N3—Cu1—N1                           | 168.32 (10) |
| 03 - 011 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1140(3)    | N2—Cu1—N1                           | 95 41 (10)  |
| 03 - C11 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127.6 (3)  | $\Omega_1  \Omega_1  \Omega_2^{ii}$ | 95 50 (9)   |
| $0^{2}-C^{11}-C^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118 3 (3)  | $N_{2}^{2} C_{1} O_{2}^{1}$         | 95.48 (9)   |
| $C_{14}$ $C_{12}$ $C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121 4 (3)  | $N_{2} = C_{11} = O_{2}^{11}$       | 80 86 (10)  |
| $C_{14} = C_{12} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126.9 (3)  | $N_2 - C_{u1} - O_3^{ii}$           | 96.20 (9)   |
| N1 C1 C2 C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.5(5)   | $N_1 = Cu_1 = 0.5$                  | 20.0(2)     |
| NI - CI - C2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 (5)    | $C_0 - C_1 - N_3 - C_{U1}$          | 39.9(3)     |
| $C_1 = C_2 = C_3 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8(0)     | C10 - C15 - O1 - Cu1                | -23.3(4)    |
| $C_2 = C_3 = C_4 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.1(6)    | C14 - C13 - O1 - Cu1                | 133.8(2)    |
| C3-C4-C3-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.3(6)    | C14 - C12 - O2 - C11                | -0.7(3)     |
| $N_2 = C_0 = C_1 $ | -49.7(4)   | C13 - C12 - O2 - C11                | 179.5 (3)   |
| 103 - 09 - 010 - 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0(4)    | $C_{10} = C_{11} = C_{12} = C_{12}$ | -21(4)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -132.3 (3) |                                     | -2.1 (4)    |
| N3-C9-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -157.8(3)  | 02—C11—O3—Cu1 <sup>1</sup>          | 42.7 (4)    |
| C8—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.3 (4)   | C10—C11—O3—Cu1 <sup>1</sup>         | -139.8 (3)  |
| C15—C10—C11—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -171.4 (3) | C15—O1—Cu1—N3                       | 31.6 (3)    |
| C9—C10—C11—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0 (5)   | C15—O1—Cu1—N1                       | -160.0 (3)  |

| C15—C10—C11—O2  | 6.1 (4)    | C15—O1—Cu1—O3 <sup>ii</sup> | -63.8 (3)  |
|-----------------|------------|-----------------------------|------------|
| C9—C10—C11—O2   | -172.5 (2) | C9—N3—Cu1—O1                | -16.1 (3)  |
| O2-C12-C14-C15  | -0.6 (6)   | C7—N3—Cu1—O1                | 158.9 (2)  |
| C13-C12-C14-C15 | 179.5 (4)  | C9—N3—Cu1—N2                | 168.7 (3)  |
| C11—C10—C15—O1  | 173.9 (3)  | C7—N3—Cu1—N2                | -16.2 (2)  |
| C9—C10—C15—O1   | -7.5 (5)   | C9—N3—Cu1—N1                | -99.8 (5)  |
| C11—C10—C15—C14 | -7.2 (4)   | C7—N3—Cu1—N1                | 75.3 (6)   |
| C9-C10-C15-C14  | 171.3 (3)  | C9—N3—Cu1—O3 <sup>ii</sup>  | 79.4 (3)   |
| C12-C14-C15-O1  | -176.5 (3) | C7—N3—Cu1—O3 <sup>ii</sup>  | -105.6 (2) |
| C12-C14-C15-C10 | 4.6 (5)    | C6—N2—Cu1—N3                | -11.2 (2)  |
| C4—C5—N1—C1     | 2.0 (5)    | C6—N2—Cu1—N1                | -179.5 (2) |
| C4—C5—N1—Cu1    | -175.0 (3) | C6—N2—Cu1—O3 <sup>ii</sup>  | 84.3 (2)   |
| C2-C1-N1-C5     | -1.3 (5)   | C5—N1—Cu1—O1                | -162.4 (3) |
| C2-C1-N1-Cu1    | 175.8 (3)  | C1—N1—Cu1—O1                | 20.7 (2)   |
| C7—C6—N2—Cu1    | 36.0 (3)   | C5—N1—Cu1—N3                | -78.7 (6)  |
| C10-C9-N3-C7    | 179.1 (3)  | C1—N1—Cu1—N3                | 104.4 (5)  |
| C8—C9—N3—C7     | -5.1 (4)   | C5—N1—Cu1—N2                | 11.7 (3)   |
| C10-C9-N3-Cu1   | -6.4 (4)   | C1—N1—Cu1—N2                | -165.2 (2) |
| C8—C9—N3—Cu1    | 169.4 (2)  | C5—N1—Cu1—O3 <sup>ii</sup>  | 102.2 (3)  |
| C6—C7—N3—C9     | -144.6 (3) | C1—N1—Cu1—O3 <sup>ii</sup>  | -74.7 (2)  |

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*; (ii) *x*+1/2, -*y*+1/2, *z*.

### Hydrogen-bond geometry (Å, °)

| D—H···A                                                                      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------------------------------------------|-------------|-------|--------------|------------|
| N2—H2A···O11 <sup>iii</sup>                                                  | 0.90        | 2.34  | 3.182 (4)    | 156.       |
| N2—H2A···O41 <sup>iii</sup>                                                  | 0.90        | 2.57  | 3.338 (4)    | 144.       |
| N2—H2B···O31 <sup>iv</sup>                                                   | 0.90        | 2.31  | 3.142 (4)    | 153.       |
| С1—Н1…О1                                                                     | 0.93        | 2.29  | 2.842 (4)    | 118.       |
| C5—H5…N2                                                                     | 0.93        | 2.59  | 3.121 (4)    | 117.       |
| C8—H8B···O3                                                                  | 0.96        | 2.39  | 2.809 (4)    | 106.       |
| Symmetry codes: (iii) $-x$ , $-y$ , $-z+1$ ; (iv) $-x+1/2$ , $y$ , $z+1/2$ . |             |       |              |            |







Fig. 2